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ACOUSTIC INSTABILITIES AS A SOURCE OF TURBULENCE

IN REDUCED DENSITY CHANNELS

1. Introduction

In experiments at NRL hot, reduced density channels have been formed in air and argon by

ohmic heating' and in nitrogen by laser heating.- Nominally such channels could persist, in pressure

equilibrium with the cold surrounding gas, until they cooled by heat conduction. In fact they become

turbulent and dissipate -2000 times faster than heat conduction would dictate. Boris and Picone3 have

shown that spatial asymmetries in the initial heating of the channels can cause such turbulence. How-

ever the appearance of turbulence in channels with relatively symmetric initial heating suggests the pos-

sibility of additional sources.

Electrical measurements on the channels in air show that they do not decay to an equilibrium

electron density for - 100 us. In argon significant amounts of energy can be trapped (resonant self

trapping) and concentrated in metastable levels. Air and nitrogen can also store energy in vibrational

states with long relaxation times. It has been recognized that acoustic wave growth can occur in a gas

maintained in a nonequilibrium state.4 This paper demonstrates that such growth can occur in a gas

relaxing from a nonequilibrium condition. The theory is then applied to the channel situation to see if

energy "frozen in" during the channel expansion is sufficient to cause a disturbance to amplify to the

point of becoming turbulent.

Finally we show the channels are stable, if the gas remains in thermal equilibrium, despite the gas

possessing a temperature dependent specific heat.

Manuscript submitted February 5, 1982. * .
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M. RALEIGH

!i. A Description of the Acoustic Instability

As a simple model which will demonstrate the growth phenomena we consider a diatomic gas pos-

sessing a long lived vibrational level. We suppose this level may be depopulated only by binary colli-

sions whereupon its energy is given up to the internal kinetic energy. If the gas properties remain spa-

tially uniform a slow relaxation to thermal equilibrium occurs. A sound wave passing through the gas

causes local perturbations in the temperature and density and thus local perturbations in the relaxation

rate. A region of compression speeds the relaxation rate delivering an extra energy "kick" to the subse-

quent re-expansion. On the other hand slowing of the relaxation rate in the rarefactions assists their

re-collapse. The sound wave thus grows by diverting some of the energy from the decaying vibrational

state into bulk motion and away from internal kinetic energy.

Sound waves are normally damped by viscosity and by heat conduction between the hot,

compressed and cold, rarefied zones. We will neglect viscosity and heat conduction in the present

analysis. This approximation must thus be justified, in any application, by comparison of the predicted

growth rate to the so-called classical absorption.'

Finite relaxation times for internal degrees of freedom normally introduce additional damping due

to the loss and retrieval of energy to and from these states. This effect is outweighed in the present

case where the vibrational level is too high lying to be accessible at the post expansion channel tem-

perature.

[If. Linear Stability Analysis

We describe the behavior of the gas by the usual Eulerian variables density, p, pressure, p, and

velocity, v, plus a specific internal energy exclusive of the vibrational level, E, and a specific energy in

the vibrational level alone, e *. The latter energy is related to the density of excited atoms, n*. via

En' (1)

where Eis the excitation energy. The rate equation determining n'

2
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t *

-rnn; + r *n(n - n*)V (2)

may be expressed in terms of E . p, and e. (We neglect the last term representing relaxation damping

since we assume r * << (r and n > n.)

t -o- "(3)
N 5iTA m

where

a* cross section for collisional excitation

r =cross section for collisional de-excitation

n total number density

== mean velocity between identical

molecules = -2 8T
A/ 7r in

A0 - Avogadro's number

A - gram molecular weight

n - mass per molecule

Equation (3) may be rewritten for a moving fluid by following standard procedures6

D* A E" p-F (rate equation) (4)
Dt

where D/Dr is the material derivative given by

D +
Dt OT

and we have defined

A 'A/ 5rrA in*

Other governing equations in addition to (4) include

DP -p v • (conservation of mass) (5)
Dt

and

0'-- - - 7 p (conservation of momentum) (6)
Dt

3



M. RALEIGH

where viscosity has been neglected. The conservation of energy equation contains an extra term to

reflect the transfer of energy from the vibrational level into internal kinetic energy

D - p7 • v - p i- (conservation of energy) (7)

and heat conduction has been neglected.

One additional equation is necessary to provide a closed set. Since the vibrational energy interacts

with the fluid only via the decay represented by the last term in (7). the fluid variables are interrelated

as in an equilibrium gas. We may therefore adopt the usual equation of state

= - (equation of state). (8)

A slowly relaxing, spatially uniform medium represents a succession of equilibrium states to a

sound wave whose period is short compared to the decay time. The fluid variables may be represented

as a slowly changing quasi-equilibrium value plus a rapidly changing perturbation

etc. (9)

Two possible types of quasi-equilibria are of interest, constant pressure, p,. and constant density. p,.

The former more nearly represents the situation within the channel but either is acceptable under the

slow relaxation approximation. The latter leads to simpler algebra and we shall develop that case. Our

assumption of a constant density, spatially uniform equilibrium implies

-- 0 (10)
at

7 P V= E0= 7) 0. (11)

These assumptions, applied to the governing equations, (4) through (8). show that the equilibrium is

further described by

. ,"* (12)
-- - I 11)I 

(2

V(- 0 (13)

17 p, 0 (14)
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___ = __° (15)

E 1 ) (16)

If we substitute the split forms of the variables, (9), into the governing equations, (4) through

(8). eliminate those terms which describe the equilibrium behavior by invoking (10) through (16), and

retain only terms to first order in the perturbations, we are lead to the linearized equations for the per-

turbation variables

"p]Ir1 + (17)

- = P o Vi 
(18)

at

f0 U -17 p1(19)

P U Po V Vi- Po (20)

[Po P I1 (21)e e°P0 Po)

We need only consider planar disturbances to demonstrate the growth phenomena. Given linear equa-

tions it is sufficient to consider separately each Fourier component of any sonic disturbance. Substitut-

ing a normal mode form for each perturbation variable

E" *=1
(w, .k )e' (k

-
x 

'
0

etc. (22)

into (17) through (21) yields

iwe .4 () EVIE, ±ip-ie 0 E+ e')06 r' (23)

ap 1 - kp(v (24)

pjpovl - k p, (25)

wPIA I - kpov, - OPo 0" (26)

e P-- Pi -P1 (27)

" Po Pod

The perturbation variables are now understood to be functions of (o and k.

5



M. RALEIGH

Equations (23) through (27) may be solved for any perturbation variable, the pressure proves to

be a convenient choice. We solve (23) for E *, and use that result, and (27), to eliminate E I and E Iin

(26). Equations (24) and (25) may be used to eliminate p and v, resulting in

(U-o o PO 4 .oqo 0 f2 P ,4 e ()k 1)'
P __ 

+  Eoo)o - 2 - k 2 + 0 . (28)
+ 2p 0 (iw - p F'q\/) P 20w - 4P -Ir)

Setting the bracketed term to zero yields the dispersion relation between wu and k. This becomes, upon

further simplification

22p(2iwN/'I, - 2e ,ip) - pAE,,') - k2(2ic 2 '-, - 2cplpgj - .Pfo) 0 (29)

where we have introduced the equilibrium sound speed

LO - Pr) I YL' Po
c"= P- ). --- = (30)

ih o I P J P')

(Notice that turning off the coupling between E and e*, by setting A to zero recovers the dispersion

relation for normal sound waves, w2 = c2k 2.)

The solution of equation (29) requires w to be complex. We may substitute w = C, + ih, in (29) and

separately equate the real and imaginary parts of the resulting expression to zero. This gives

,u "(6,Ve,-o * 2,).4 po - p .AE,)

- k2(2,c-wux/, + 2c- 4p ,.q + .4p,, r)

- u "(2C,av-, + 2 6).4 1) - p1.4 L,) = 0 (31)

and

3 ',,- o + (2e 4). - po,4j4e)w, + e,,(c 2k 2 - wr)- 0. (32)

Equation (31) may be used to eliminate w, in (32) with the result that

+ lW + .VW, + Q = 0 (33)

where

A p 0 o (34)

I , 2 2E,p.4 Ptj.4 E t) p4 (I cAk,
N. + + 35)

4 4 16 e, 4

Q ,'4 kp (Y- 1)
16 /E,,

k - .6
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The constant term. Q, will always be negative, thus there will always be a positive value of W,

corresponding to wave growth.

IV. Application to Laser Formed Channels in Nitrogen

The laser formed channel in nitrogen reaches the following conditions after expanding to pressure

equilibrium

Po = P a,,,,, , = 10 6 d y n escm-
P0 oAbienf gM

P ,h,, 2.3 x 10-4  "9
23Xi.33 cm 3

r = Pambient a,,b,en, - 1300 K
Po

5 A 0  e
eO =rrans. 

+  ,ror. U kT= 1010 erg
2 A g

The expansion is approximately adiabatic. If the vibrational energy is frozen in during this expansion

the effective adiabatic exponent is y --= 1.4 reflecting only the translational and rotational contributions

to tie specific heat. We may backtrack to find the initial temperature prior to expansion

,= P= 2400 K. (37)

The frozen approximation is justified by calculating the vibrational relaxation times (r, and 7) under

both the pre and post expansion conditions. The relaxation times depends on the binary collision rate,

r,,t. and the probability of de-excitation as a result of a collison. PlO*

"f. ( 3 8 )

Plo

Noting that

,, 1 (39)

It r l

we find

5-, S .sec

- - 300u sec .

'The de-excitanon cross section. M . introduced in Section III and Pit) are related in via fr = Pit ,

7
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The channel expansion takes - 30 i' sec so vibrational levels may first become excited and then frozen.

in nitrogen only the lowest vibrational level (Ei A = 3340K) will be appreciably excited under the

initial conditions. As an upper limit on the possible vibrational energy we calculate the equilibrium

populotion for this state

n, e tl,- (40)

It this fraction of the molecules remains excited during the expansion we find

E - k, T._ 1.5 x 10 e,
A g

We now calculate the growth rate., w.. Under these conditions only the linear term in (33) and

the last term in (35) are significant. The growth rate becomes independent of wave number, k. and is

given by

,t po(y - I) J

36 sec- (41)

where we have used (see Eq. 12)

1 (42)
7o J-)E 1)

to e v a lu a te - .

This growth rate is clearly too small to have any effect over the 300 4 s during which the nitrogen

relaxes.

V. Stability of Gases with Temperature Dependent Specific Heats

For low frequencies or fast relaxation rates the gas remains in thermal equilibrium as it adiusts to

the disturbance. We may include the contributions from all the internal degrees of freedom in E and

set E * to zero. The specific energy now acquires a non linear temperature dependency

f cc T' (43)

8
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where a > 1. If we combine (43) with the gas law, p = p RT, and linearize the resulting expression we

find

E= a E,1
p  "'-. (44)

The dispersion relation for perturbations from fixed equilibrium is then given by substituting

E = aE,) and E, = 0 in 129). Ordinary sound waves now result ((a = ck) with a modified sound speed

= a P- o (45)

PJ

The medium is now stable to any planar disturbance.

The energy principle9 permits us to demonstrate stability in complex geometric situations without

having to solve the equations of motion. We shall apply it to a column of hot gas, with a temperature

dependent specific heat, embedded in a cold surrounding medium.

The Lagrangian density in a region of uniform pressure and density may be expressed as'0

L T- V= i 2 + ) (V 2 (46)
2P0 1  2 a v

where 71 is a small fluid displacement from equilibrium and Vt = l/'p,) is the specific volume. Proceed-

ing as in the derivation of (44) we find

=aE 0 [('p + 0o]OV (47)
P 0 '0

But having neglected heat conduction, the first law of thermodynamics states

E= - PoOV. (48)

Equating (47) and (48) gives

vop a Po + a0  (49)

Ovj~ QE 0  v 0

so that

9



M. RALEIGH

l 1 po,'D a 6
L poio Po +  o (7 •) 2. (50)

Applying Lagrange's equation for continuous medial1 to (50) we recover the wave equation with

the sound speed given by (45).

The energy principle states that the motion of the system will be bounded if the total potential

energy for the system increases for any disturbance. The potential energy is

V fffd3x V = 4ff d3x -PL+i! i + a -E,

2 IUMM a1E J

+ I ff f'dx 1, +p a 1(V .)2 (51)
olunside

where the subscripts h and c refer to hot and cold respectively. The potential energy is positive for any

compressive (i.e. sonic) disturbance and zero for any incompressible flow. These situations correspond

to bounded oscillations and persistent but non amplifying flows.

VI. Conclusions n-,

An excess of nonequilibrium internal energy in a gas transforms the relaxational damping of

sound waves into a growth phenomena. A model diatomic gas has been considered which possessC3

one vibrational level. The small signal growth rate for normal modes (plane waves) has been calculated

from the rate equation and the equations of motion. The growth proves to be slight for the conditions

that obtain within the laser heated reduced density channels. Thus it appears that air chemistry plays

no role in creating the turbulence observed in these channels. Metastable energies an order of magni-

tude or more larger than the kinetic energy are required to produce a significant effect.

An energy principle analysis shows that the internal energy stored in rapidly relaxing states cannot

cause instabilities i.e. a gas which remains in thermal equilibrium but possesses a temperature

dependent specific heat does not constitute an amplifying medium for sound waves.

10
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